TECHNOZONE

OZONE GENERATOR Models 40 / 70

- CONSUMPTION
- + SILENT
- + ACTIVE OXYGEN IN THE AIR

PREMISE:

The treatment of environments with ozone is a procedure that drastically reduces pathogenic agents such as germs, bacteria, viruses, molds, fungi, spores and yeasts from air and water and removes bad odors of an organic and inorganic nature. It is based on the oxidizing properties of ozone, a natural gas composed of three oxygen atoms (O3) present in the stratosphere, which disrupts the molecular structure of allergens, causing their death (bacteria) or inactivation (virus), and cancels them thus every possible effect (infections, proliferation, pathologies, bad smells). Hygiene with ozone is widespread in civil, industrial and automotive cleaning, for over 20 years it has been used successfully in various sectors including the medical-health and food sectors, qualifying as a valid aid to traditional Medical and surgical devices.

ADVANTAGES:

- -Leaves no residue and allows to drastically reduce the use of chemicals
- -It does not damage the materials in the rooms and does not stain the fabrics
- -A few minutes are enough to sanitize a vehicle
- -Maximum cleaning capacity: sanitizes even the most difficult points to reach

SANITIZE the air and surfaces from pathogens such as bacteria, fungi, molds and pollen, main causes of allergic reactions and acts as an inactivator on viruses. Hygiene also takes effect in air conditioning ducts and in the evaporator where foul-smelling molds are created as a result of humidity.

IT NATURALLY CLEANSES the passenger compartment of vehicles and boats, totally eliminating unpleasant odors of various kinds (smoke, animals, mold ...), bacteria and pollen - main causes of allergic reactions - without staining the fabrics and materials.

National and European Regulation

In ITALY

- The Italian Ministry of Health recognizes ozone as "natural protection for the sterilization of environments contaminated by bacteria, viruses, spores, etc." (ref. n° 24482 of 31/07/1996).
- The Ministry of Health with CNSA of 21/10/2010 also recognized the use of ozone in the treatment of air and water as a sanitizing and disinfesting agent.

In EUROPE:

Used since 2003 for disinfection and sterilization in water bottling processes, it is regulated for food purposes by Directive 2003/40 / EC of the EFSA commission of 16 May 2003.

APPLICATION TIMING:

Model 40

Mg/h	M³	Min.	Recommended temperature	Maximum temperature
4.000	Up to 15	10	20 °C	40 °C
	30	20	20 °C	40 °C
	45	30	20 °C	40 °C
	Every 15 m ³	Increase by 10	20 °C	40 °C

Model 70

Mg/h	M³	Min.	Recommended temperature	Maximum temperature
7.000	Up to 30	10	20 °C	40 °C
	45	15	20 °C	40 °C
	60	20	20 °C	40 °C
	Every 15 m ³	Increase by 5	20 °C	40 °C

Material compatibility with Ozone:

Material	Compatibility	
ABS plastic	B - Good	
Acetal (Delrin®)	C - Fair	
Aluminum	B - Good	
Brass	B - Good	
Bronze	B - Good	
Buna-N (Nitrile)	D - Severe Effect	
Butyl	A - Excellent	
Cast iron	C - Fair	
Chemraz	A - Excellent	
Copper	B - Good	
CPVC	A - Excellent	
Durachlor-51	A - Excellent	
Durlon 9000	A - Excellent	
EPDM	A - Excellent up to 100-deg F	
EPR	A - Excellent	
Ероху	N/A	
Ethylene-Propylene	A - Excellent	
Fluorosilicone	A - Excellent	
Galvanized Steel In Water	(C - Fair), In Air (A - Excellent)	
Glass	A - Excellent	
Hastelloy-C®	A - Excellent	
Hypalon®	A - Excellent	
Hytrel®	C - Fair	
Inconel	A - Excellent	
Kalrez	A - Excellent up to 100-deg F	
Kel-F®	(PCTFE) A - Excellent	
LDPE	B - Good	
Magnesium	D - Poor	
Monel	C - Fair	
Natural rubber	D - Severe Effect	
Neoprene	C - Fair	
NORYL® D - Poor		
Nylon D - Severe Effect		
PEEK	A - Excellent	
Polyacrylate	B - Good	
Polycarbonate	A - Excellent	
Polypropylene	C - Fair	
Polysulfide	B - Good	

Polyurethane, Millable	A - Excellent	
PPS	(Ryton®) N/A	
PTFE (Teflon®)	A - Excellent	
PVC	B - Good	
PVDF (Kynar®)	A - Excellent	
Santoprene	A - Excellent	
Silicone	A - Excellent	

Ratings -- Chemical Effect

A. Excellent. -- No effect

B. Good -- Minor Effect, slight corrosion or discoloration.

C. Fair -- Moderate Effect not recommended for continuous use.

Softening, loss of strength, swelling may occur.

D. Sever Effect -- Not recommended for ANY use.

N/A. Information Not Available.

MATERIALS AND OZONE COMPATIBILITY GUIDELINES by WEIGHT:

Metals			
Ozone Concentration (% by Weight)	< 2 %	From 2 % To 10 %	From 10 % To 14 %
Stainless steel 316 L	Excellent	Excellent	Excellent
Hstelloy-C®	Excellent	Excellent	Excellent

Pastics			
Ozone Concentration (% by Weight)	< 2 %	From 2 % To 10 %	From 10 % To 14 %
PVC	Excellent	Not recommended	Not recommended
CPVC	Excellent	Not recommended	Not recommended
PVDF	Excellent	Excellent	Excellent
ECTFE	Excellent	Excellent	Excellent
PTFE	Excellent	Excellent	Excellent
PEEK	Excellent	Excellent	Non consigliato

Elastomers			
Ozone Concentration (% by Weight)	< 2 %	From 2 % To 10 %	From 10 % to 14 %
EPDM	Excellent	Not recommended	Not recommended
Silicone	Excellent	Not recommended	Not recommended
Fluorosilicone	Excellent	Excellent	Not recommended
FPM (Viton®)	Excellent	Excellent	Not recommended
FKM	Excellent	Excellent	Excellent
KPFE (Kalrez)	Excellent	Excellent	Excellent
PCTFE (Fel-F®)	Excellent	Excellent	Excellent

Note 1: These guidelines apply to dry ozone gas. Wet gas is generally more aggressive towards any material.

Note 2: In conditions where ozone concentration is higher than 14 % independent validation should be persued.

Last update: 19.04.2023

